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Abstract

The aim of this thesis is to investigate if it is possible to computationally model
BCI learning and use reinforcement learning to predict the effects of different neu-
rofeedback parameters. A model of BCI learning was constructed and experiments
were run with Q-learning agents using different model parameters. According to the
model, continuous feedback leads to significantly more efficient BCI learning than
discrete feedback, and BCI learning becomes quadratically slower as the signal-to-
noise ratio decreases. Optimistic feedback results in significantly faster learning than
neutral feedback, and pessimistic feedback significantly slows down learning relative
to neutral feedback. Since research in this area is rather scarce, it is hard to com-
pare the results gained using the model with empirical data. However, the results do
seem to reflect existing data. The optimistic feedback data reflecting empirical data
seems to be the result of a side-effect of the way rewards are calculated. Overall,
the results suggest that the model may be used to predict the effects of different
neurofeedback parameters, but further research would be needed.

1 Introduction

Brain-Computer Interfacing has a lot of potential. Among others, it can help people
with locked-in syndrome to communicate [1], it can give disabled patients the ability to
control a neuroprosthetic [2], and it has a variety of applications for healthy users [3].
Unfortunately, controlling a BCI still requires a lot of training [4]. Research on how to
best train users is still rather scarce [5], so with this thesis I try to answer some questions
on how to best give feedback during BCI learning.

In this thesis, I investigate if it is possible to construct a computational model of BCI
learning and use reinforcement learning to predict the effects of different neurofeedback
parameters. First, background information on Brain-Computer Interfacing, neurofeed-
back, and reinforcement learning will be given. The construction of the model will be
explained and how it was used to investigate the effects of different neurofeedback pa-
rameters. Then, the results of the experiments are given and these results are discussed.
This thesis ends with a conclusion of the knowledge gained with this research.

1.1 Brain-Computer Interfacing

Advances in neuroscience, signal processing, and machine learning have made it possible
to derive a user’s intention using only their brain state [2]. We call a device that ac-
complishes this a Brain-Computer Interface (BCI). A Brain-Computer Interface allows
a user’s brain state to be translated into commands that can control an external device
[1]. While initial research to the use of BCIs was mainly focused on communication and
control for patients who are completely paralysed [2], it has been shown that BCIs can
be applied in a wide variety of ways, including, but not limited to, helping patients with
ADHD or epilepsy [6], post-stroke rehabilitation [7], and even controlling video games
[8]. One of the long-term goals of BCI research is to allow disabled users to control a
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robotic arm or neuroprosthetic. At first it was believed that this would only be possi-
ble using invasive BCIs, which derive the user’s intent from potentials recorded within
the brain [9]. In 2004 however, Wolpaw and McFarland showed that multidimensional
control is also possible using noninvasive BCIs [2]. This made BCI research much more
relevant to a lot of potential users, because invasive BCIs have a lot of disadvantages [10].

Since BCIs make use of a person’s brain state, an important BCI component is its
measurement technology. Different measurement technologies are used to measure brain
activity, such as electroencephalography (EEG) [2], magnetoencephalography (MEG)
[11], functional magnetic resonance imaging (fMRI) [12], and functional near-infrared
spectroscopy (fNIRS) [13]. Most current BCIs use EEG because of its high temporal
resolution, ease-of-use, and relative low costs [9]. This research focuses on EEG, for more
information on other measurement technologies see [9]. EEG measures electric brain ac-
tivity on the scalp, caused by the flow of electric currents during synaptic excitations of
the dendrites in neurons [14]. A BCI tries to extract characteristics out of these EEG
signals that are uniquely tied to a specific mental process or state [15]. These character-
istics are called signatures. Specific mental tasks are used to generate such signatures [9].

Our focus is on Event-Related Desynchronization and Synchronization (ERD/ERS) sig-
natures. ERD and ERS correspond to amplitude modulations in the power of EEG
signals in certain frequency bands [16]. An ERD results in a smaller amplitude in EEG
signals, whereas an ERS results in a larger amplitude. ERD and ERS can be elicited
using specific mental tasks, and can be observed in different spatial locations depend-
ing on what mental task is used [17]. This makes them an excellent signature for BCI
control. One of the most-used mental tasks to elicit ERD/ERS is imagined movement
(IM) [18]. Movement and imagined movement result in an ERD and ERS in the mu
frequency band (8-12Hz) and the beta frequency band (16-24Hz) [19]. Both ERD and
ERS for movement imagery can be found in the contralateral sensorimotor cortex (i.e.
on the opposite side of the imagined limb movement). Thus, based on the location of
the ERD/ERS a BCI can discriminate between different mental tasks, which can then
be translated into actions [19]. Other mental tasks that elicit ERD/ERS include mental
rotation, word association, auditory imagery of a melody, and mental subtraction [20].
Not all mental tasks result in equal BCI performance for all users [21]. Mental tasks
related to a person’s specific skill might enhance performance, so the optimal tasks differ
for each user [22]. Currently, BCIs that make use of ERD/ERS can be used with up to
four different mental tasks. More than four tasks, and the prediction accuracy and thus
BCI performance decreases [23]. This means that it is currently possible for a user to
control a wheelchair using these four tasks, by linking each task to a specific command
(e.g. right hand IM → forward).

Brain-Computer Interfacing has amazing potential. It gives patients who are unable
to move any muscles a method of communication [1], it can allow disabled patients to
control a robotic arm or neuroprosthetic [2], and it can even be useful for healthy users
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by monitoring mental workload [24] or allowing control of video games [8]. Currently, it
still takes a lot of training for users to become proficient at controlling a BCI [23]. This
means that the way we train users becomes very important. Unfortunately, not a lot of
research has been done in this area [4]. Currently, using a BCI still requires expensive
equipment, trained professionals to handle the equipment, and a lot of training time. If
it turns out to be possible to computationally model BCI learning and use this model to
investigate the efficacy of different neurofeedback parameters, this could save researchers
a lot of time and money, and potentially benefit a large amount of people.

1.2 Neurofeedback

In the 1960s it was shown that it is possible for humans to gain control over their
own brain waves through the use of instantaneous feedback [25]. Using instantaneous
feedback and operant conditioning, users are able to learn how to control different elec-
trophysiological components of their brain activity [26]. The goal of neurofeedback is
to teach users what specific states of cortical arousal feel like, and how to activate such
states voluntarily [27]. Neurofeedback has been shown to be effective at improving symp-
toms of children with autism [28], ADHD and epilepsy symptoms [6], and schizophrenia
[29], among others. Neurofeedback is a form of BCI, since brain activity is measured,
processed, and output is fed back to the user.

In a typical neurofeedback setting, a bar or cursor is used to give feedback on the user’s
brain state [27]. If the user’s brain state is desirable, the bar will grow or the cursor will
move towards a certain stimulus. For example, a user will be shown a bar whose size
represents the amplitude of a certain frequency. The user will then be given the goal to
try and maximise the length of the bar. If the bar reaches its maximum height, a tone
may sound or a counter will increase. This tone and counter increase act as a reward
for the user. This same protocol is repeated until the user has learnt the BCI skill. The
user should be able to consciously modulate the size of the bar, and thus the amplitude
of that certain frequency in their own brain.

Wolpaw et al. (2002) have shown that BCI use is a skill, and as such it can be learned
[1]. Neuper and Pfurtscheller (2010) have proven that neurofeedback is a necessary com-
ponent to learn the BCI skill [30]. Lotte et al. (2013) argue that the user is one of the
most critical components BCI loop [5]. Improving the training paradigms (i.e. neuro-
feedback) used in BCI skill acquisition may be one of the easiest, yet powerful methods
to improve BCI performance, and yet there has hardly been any research in this direc-
tion. Even the so-called ”BCI illiterates”, about 20% of users who are unable to learn
how to control a BCI, may be explained by flaws in current BCI training approaches [5].
This gives another reason why investigating the optimal way to give feedback in BCI
skill acquisition is a good idea.
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1.3 Reinforcement Learning

Reinforcement Learning (RL) is a form of machine learning. Reinforcement learning is
learning how to behave in certain situations to maximise a numerical reward [31]. The
learner is not told how to behave, as in supervised learning, but instead must discover
what actions lead to the highest rewards by trying them. This means that the learner
must perform a trial-and-error search of the possible actions to discover which actions
are the most effective. This becomes harder when actions may initially seem very bene-
ficial due to a high immediate reward, while other actions may be more beneficial in the
long-term. Reinforcement learning can be characterised as ”learning by doing”, since
the learner needs to learn how to behave by performing random actions and evaluating
the outcomes of these actions.

We call a reinforcement learner a learning agent. An agent interacts with its envi-
ronment by performing actions. These actions affect the agent’s own state and the
environment. An agent must also have a goal it can work towards, such as maximising a
numerical reward. Rewards are returned by the environment when the agent performs an
action. Reinforcement learning is often used in environments that are interactive, since
other methods such as supervised learning are often inadequate for learning from inter-
action [31]. Reinforcement learning agents should be able to learn how to interact with
uncharted territory, since in such areas learning from the environment is most important.

One of the dilemmas in reinforcement learning is the trade-off between exploration and
exploitation [31]. When an agent is exploring its environment, it performs random ac-
tions to get a sense of the rewards returned by those actions. However, if an agent
is constantly exploring, it has no chance to benefit from the newly gained knowledge.
When an agent is exploiting, it is selecting the actions that it knows are good, it is per-
forming greedy actions. But when an agent is only exploiting known actions, it may miss
actions that are more beneficial. The agent must try a variety of actions, and favour the
ones that seem best.

Most reinforcement learning environments are formulated as a Markov Decision Pro-
cess (MDP) [32]. An MDP is a mathematical framework for modelling decision making
in situations where outcomes are are partly random and partly under the control of a
decision maker [33]. An MDP consists of a set of states S, a set of actions A, a set of
probabilities Pa(s, s′) of state s leading to state s′ after action a, a set of rewards Ra(s, s′)
with the rewards of action a used in state s leading to state s′, and a discount factor γ,
which represents the importance of future rewards relative to present rewards. The main
problem of an MDP is finding a policy π, that specifies for each state what action to
perform to maximise the total reward. This problem can be solved using reinforcement
learning.

In this research, temporal-difference (TD) learning is used. This is a category of re-
inforcement learning algorithms that do not keep an internal model of the environment
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[31]. TD methods use a state value function, which contains a value for each state en-
countered. The value of each state is updated using the prediction error, the difference
between the expected reward and the actual reward. Repeated updating of these values
leads to increasingly better predictions, and thus to better performance. Rushworth
and Behrens (2008) have shown that this update rule can be used to predict choices in
animals [34], so investigating whether we can use this same update rule to predict BCI
learning is an interesting next step.

1.4 Research Questions

In our research group we research how to best give feedback as to optimise the BCI
learning rate. Specific questions regarding BCI learning that are investigated are: the
effect of continuous vs. discrete feedback by Jordy Ripperda, the effect of optimistic
and pessimistic feedback by Max Moons, and the effect of motivation by Sjoerd Bos.
They will research these questions with real-life experiments using EEG. My research
will focus on the question whether we can use reinforcement learning to predict these
same effects. I will create a computational model of how a person learns to use a BCI,
and then use a reinforcement learning algorithm to compare the learning rates of the
agent using different model parameters. The agent’s results will then be compared with
the results of the real-life experiments by the other members of the group, and existing
literature. Since EEG is very susceptible to noise [35], the effect of EEG noise on BCI
learning will also be investigated, as well as the effect of noise on the two different types
of feedback.

My research question will therefore be: Can we use a reinforcement learning model
to predict the effects of different neurofeedback parameters on BCI skill ac-
quisition?

My sub-questions are related to the research questions of my group members. I will
compare the model’s results with empirical data, and compare the model’s results us-
ing different parameter settings under the assumption that the model reflects empirical
results.

• Do the results of the model reflect empirical results?

– Does the effect of continuous vs. discrete feedback reflect empirical results?

– Does the effect of optimistic vs. neutral vs. pessimistic feedback reflect
empirical results?

• Assuming the model reflects empirical results, what is the effect of different neu-
rofeedback parameters on BCI skill acquisition?

– What is the effect of continuous vs. discrete feedback on BCI skill acquisition?

– What is the effect of optimistic vs. neutral vs. pessimistic (continuous)
feedback on BCI skill acquisition?
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– What is the effect of noise on BCI skill acquisition?

1.5 Hypotheses

1.5.1 Continuous vs. discrete feedback

Neuper et al. (1998) suggest that continuous feedback leads to more efficient learning
[36]. McFarland et al. (2008) however, showed that continuous feedback can be fa-
cilitory or inhibitory to BCI skill acquisition, depending on the user [37]. Continuous
cursor movement is a form of direct feedback, which if the user is doing well, can work
reinforcing. If the subject is not performing well, this continuous movement might be
distracting, leading to worse motivation and performance. Additionally, the continuous
cursor movement might cause certain EEG responses that interfere with BCI control, or
might lead to eye movement artifacts that distort the EEG signal [37]. So there are a
lot of different effects related to continuous and discrete feedback that might influence
BCI skill acquisition in humans. Effects such as motivation and EEG responses will not
be investigated, since these are too complex to model. Because reinforcement learning
agents learn from the rewards gained by actions, it can be expected that continuous
feedback will be more useful to the agent, since this gives direct feedback on the value
of actions. Whereas discrete feedback at the end of an episode will be feedback on the
entire trial, and the agent will have to find out which actions over the entire trial lead
to a good outcome. The agent will be able to do this due to the discount factor [31],
but it will take a large amount of episodes depending on the amount of states in the
episodes (the more states in an episode, the harder it will be for the agent to deduce
which actions are positive). It is hypothesized that continuous feedback in the model
will lead to faster learning, whereas in the human trials this will depend on the user.

1.5.2 Optimistic vs. neutral vs. pessimistic feedback

Motivation has been shown to play a large role in BCI skill acquisition [22]. Barbero
and Grosse-Wentrup (2010) suggest that incapable subjects benefit from positively bi-
ased feedback, whereas already capable subjects perform worse given inaccurate feed-
back [38]. Negative feedback has been shown to decrease motivation [39]. Barbero
and Grosse-Wentrup hypothesize that poor performance (which can seem random to
the user) demotivates the user which leads to even poorer performance. In this case,
biased feedback will keep the user’s motivation up until they become more proficient
at controlling the BCI. Capable users are already motivated since their performance is
high, so they benefit the most from accurate feedback to improve their skill. As already
mentioned, motivation will not be modeled, so this factor will not have an influence
on learning performance. Therefore, in the model, optimistic and pessimistic feedback
will essentially just be noisy rewards in one direction (i.e. positive or negative). This
suggests that optimistic and pessimistic feedback will lead to slower learning, and both
will decrease learning performance equally.
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1.5.3 Noise and BCI learning

Noise in an EEG system distorts the signal and thus makes it harder to extract the
brain signals from the EEG signal [40], leading to bad classification performance. So in
real-life experiments, noise should be minimised. In the model, noise essentially leads
to noisy rewards. The agent can perform a correct action, but due to noise the wrong
mental task might be predicted and thus a bad reward will be returned. Therefore,
it is to be expected that the more noise is present in the system, the worse learning
performance will be. Additionally, noise might have a different effect on continuous and
discrete feedback. Since the noise in this research will be gaussian, it may be expected
that it has a smaller effect on discrete feedback due to the noise canceling out at the
end of a trial. Whereas continuous feedback will lead to constant noisy rewards. So it is
hypothesized that the effect of noise is bigger in the continuous feedback condition than
in the discrete feedback condition.

2 Methods

2.1 Modeling BCI Learning

To investigate if it’s possible to model BCI learning, and to see if that model can predict
the empirical effects of different neurofeedback parameters, first a model had to be built.
A model can be defined as a simplified version of reality. This means that even though
some parts of the real-life process will be abstracted, the goal is to create a meaningful
model that can be used to predict empirical data. In this case, the goal is to model the
way users learn to control a BCI using the Buffer BCI system.

During a Buffer BCI training session, the user will see a black screen with a number of
ellipses. One ellipse is shown for each task (e.g. imaginary feet movement), each on a
circle with equal amounts of space in-between them. In the center of each ellipse a label
specifies what task is represented by that ellipse. In the center of the screen, a cursor
ellipse is shown. These ellipses are used to give feedback to the user. The Buffer BCI
system training sessions consists of trials, and each trial has a task. At the beginning of
a trial, the task for that trial is shown to the user at the center of the screen. During
the trial the user will perform said task (e.g. think about moving their feet), and the
system will give feedback based on its prediction. This feedback is either continuous
or discrete. In the case of continuous feedback, the cursor constantly shows what the
current prediction is using its location (i.e. the cursor being closest to the ellipse labeled
’Feet’ means the system predicts the user is imagining moving their feet). At the end of
a continuous feedback trial, the ellipse that was closest to the cursor will change color.
The task represented by that ellipse is the task that has been predicted by the system.
In the case of discrete feedback, the cursor is not shown the entire trial. Only at the end
of the trial feedback is given, by coloring the ellipse with the task that was predicted
based on the input of the entire trial. See figure 1 for a visualisation of a Buffer BCI
discrete feedback trial. After enough training sessions, a user should have learned how
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Figure 1: Visualisation of a Buffer BCI discrete feedback trial. The baseline phase
presents the user with the trial task. During the imagery period the user performs this
task. In the feedback phase the system will present the user with the predicted class.
After this, there is an intertrial period before the next trial starts. Image by Jordy
Ripperda.
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Figure 2: Time-frequency representation of ERD/ERS over the C3, Cz and C4 elec-
trodes. The x-axis represents time in seconds (s). The y-axis the frequency range 4-40Hz.
Adapted from Neuper et al. (2009) [41].

to control the cursor in the case of continuous feedback, and how to produce correct
classifications in the case of discrete feedback.

Certain requirements for this model followed from the research questions: 1) the model
should have some measure of brain activity, 2) the model has to be able to represent
different tasks, 3) the model should be able to represent noise, 4) the model should
be a Markov Decision Process. To satisfy these requirements, the following model was
constructed.

2.1.1 States

In the type of BCI that we study, different tasks have different spatio-temporal charac-
teristics. Imagined right hand movement leads to an ERD over the contralateral (i.e.
left) sensorimotor cortex, while imagined left hand movement leads to an ERD in the
right sensorimotor cortex [42]. These ERDs can last up to several seconds (see Figure 2).
Based on the spatio-temporal characteristics of these different tasks, the BCI can dis-
criminate the task that was being performed by the user. The more a user trains using
a BCI, the better the user will be able to control these ERDs [2].

Since it is not possible to model the entire brain, it was necessary to find an abstraction
for the different spatio-temporal characteristics of the different tasks. This was done by
representing the activity of each task with a continuous value between 0.0 and 1.0, i.e.
0% to 100% activity on a certain task. Just like a user can have a strong ERD over the
left primary sensorimotor cortex and no ERD over the right primary sensorimotor cor-
tex, an agent can have 100% activity on one task (e.g. right hand IM), but 0% activity
on a different task (e.g. left hand IM) .

The agent learning the model needs to learn what action to perform for each state
it encounters. And what action needs to performed is dependent on the task of the
current trial. So the states also store the task of the current trial (e.g. right hand IM).
Since one of the research questions involves the effect of noise on BCI skill acquisition,
there should be some measure of noise in the states. Noise in an EEG system lowers
the signal-to-noise ratio, which makes it harder to correctly predict the task the user is
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Figure 3: Visualisation of a state in the model. A state consists of a task (e.g. tongue
IM), a continuous value between 0 and 1 for each task, representing the activity for that
task, and a continuous noise value for each task. In this example state, because of the
high amount of noise the system will predict the agent is performing left hand imagined
movement. The agent however, has higher activity in the imagined tongue movement
task, which is also the trial task it is supposed to be doing. Even though the agent is
performing the correct task, it will have trouble learning because the system will predict
it is performing left hand imagined movement.
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Figure 4: Visualisation of the effects of different actions on states. When a certain
task is performed as action, the activity of that task will go up with the modulation
rate, while the activity of the other tasks gets lowered with the modulation rate. In this
example, the modulation rate is set at 0.25.

performing [40]. In the model this is emulated by having a continuous value for each task
on top of the task activity. This means that as the noise increases, the chance of misclas-
sification increases, the rewards will get noisier, and thus learning will be slower. This is
effectively the same as the signal-to-noise ratio in EEG. The agent only has control over
the task activity (by performing actions), and noise gets added by the environment. The
rewards are based on the task activity and the noise. For a visualisation of the states,
see Figure 3.

2.1.2 Actions

In a real-life BCI session, the user will perform a certain task to induce an ERD, which
is then used by the BCI system to predict which task is being performed. The model
works in the same way. The agent can select a task from all possible tasks, and the brain
activity value of that task will increase with the value of a parameter named the modu-
lation rate. Even though the brain is incredibly complex and has a staggering amount of
processing capacity, humans are still limited to being focused on one thing at a time [43].
For this reason, when the agent performs a task, the activity of that task will increase
with the modulation rate, while the activity of the other tasks will decrease with the
modulation rate. See figure 4 for a visualisation of how different actions affect activity
of a state. The actions in this model are deterministic or stochastic dependent upon
the noise. If there is no system noise, the actions are deterministic: the same action in
the same state will always have the same effect. However, when noise is present, the
environment is stochastic, since there’s an element of randomness to the noise. Even
though the noise is random, the model does satisfy the Markov Property, the conditional
probability distribution of the next state is only dependent on the current state and the
parameter settings of the model. These parameters do not change during experiments.

The amount of noise in the states is determined by the system noise parameter. For
every action that is performed, a random gaussian value gets drawn for each task, and
is multiplied with the system noise parameter. This value is then added to the current
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Figure 5: Visualisation of reward calculation. Buffer BCI uses the cursor (the red
ellipse) to show its current prediction. Just like a user judges their own performance by
the distance between the cursor and the task ellipse (in this case Left-Hand), the agent
receives a reward based on this same distance: the euclidean distance between the cursor
and task ellipse is calculated, and the negated value is returned as reward. This means
that the larger the distance between cursor and task ellipse is, the lower the reward is.

noise of each task. This gaussian noise has a mean of 0, which means that the average
noise over a large amount of states will be zero. A common technique to extract ERPs
from an EEG signal is to average over a large amount of epochs (recording periods)
time-locked to events [40]. Averaged over a large amount of states, the noise for each
task will also be zero. This makes for noise that is similar to real-life noise that is present
in EEG. Incidentally, the states in the model also represent epochs, although slightly
different ones. This well be expanded upon in a later paragraph.

2.1.3 Rewards

The Buffer BCI system shows the user its current prediction using the cursor. The cur-
sor being closer to the task ellipse means the user is performing well, since the system
predicts the user is performing the correct task. The model uses the exact same concept.
From the total output of a state (i.e. the activity + noise for each task) a prediction is
generated. This prediction leads to a cursor position, and the distance between the task
ellipse and the cursor is used as a negative reward. This means the lower the distance
between the cursor and the task ellipse, the higher the reward. This is exactly how
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the Buffer BCI gives feedback to a user. In a Buffer BCI continuous feedback trial, the
user constantly receives feedback. In a continuous trial of the model, the agent receives
a reward for each state visited. In a Buffer BCI discrete feedback trial, the user only
receives feedback at the end of a trial. In a discrete trial of the model, the agent only
receives feedback in the last state of the trial. At the end of a trial, the distance between
the predicted task ellipse and the trial task ellipse is used as a reward. This is both
for the continuous and discrete trials, since the feedback phase (as seen in Figure 1)
also happens in a continuous trial. In discrete trials, where only the last state returns a
reward, the activity and noise of all the states is averaged, and based on this a prediction
is made. This means that the prediction is based on the brain activity over the entire
trial, which is also how the Buffer BCI predictions work.

The calculation of the reward using the distance between the cursor ellipse and the
trial task ellipse is equal to the one in the Buffer BCI system. The position of the cursor
relative to the task ellipse is calculated. The euclidean distance between the trial task
ellipse and the cursor ellipse is then calculated, and the negated value of the distance is
returned as the reward. At the last state of a trial, the closest task ellipse to the cursor
is predicted, and the distance between the predicted task ellipse and trial task ellipse
is used as reward. The exact calculation used to calculate the reward is explained in
appendix A. For a visualisation of the reward calculation, see Figure 5.

Optimistic and pessimistic feedback is given by sampling a random gaussian value mul-
tiplied with the reward noise parameter and adding this to the true feedback. The
gaussian value ensures that all feedback is not raised by a static amount. For optimistic
rewards, only positive noise gets added to the rewards. For pessimistic rewards, only
negative noise is added. This method of drawing a sample from a Gaussian distribution
is also used by Barbero and Grosse-Wentrup to give biased feedback [38].

2.2 Q-Learning

The reinforcement learning algorithm chosen to investigate the effects of the different
parameters is Q-Learning. Q-learning is one of the simplest reinforcement learning
algorithms, yet is surprisingly powerful [44]. It uses a learning rule that has been shown
to be able to predict choices in animals [34]. Furthermore, since the goal of this research
is to investigate the learning differences using different neurofeedback parameters, it is
not necessary to use a very advanced algorithm that may be more efficient. Q-learning
uses Q-states, which store a value (called Q-values) for each state-action pair that has
been encountered. Q-values are updated using the following update rule:
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Q(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+

α︸︷︷︸
learning rate

×


learned value︷ ︸︸ ︷

rt︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

· max
a

Q(st+1, a)︸ ︷︷ ︸
estimate of optimal future value

−Q(st, at)︸ ︷︷ ︸
old value


Often, reinforcement learning algorithms are used in environments with a finite amount
of states. Algorithms keep learning until the environment has reached a terminal state
[31]. Such a subsequence, from a starting state to a terminal state, is called an episode.
After the agent has reached a terminal state, the environment is reset, and the agent
starts again from a starting state. For this model, the logical choice for episodes was
trials, since trials are the time-bound subsequences of which a learning session consists.
The goal of one trial is to improve the user’s skill on one specific task. So one episode
represents a single Buffer BCI trial. Such a trial consists of multiple states, which we
call epochs. One epoch represents one brain measurement step. The amount of epochs
in a trial and the modulation rate can be set in such a way that a trial represents a
real Buffer BCI trial of several seconds. The starting states consist of a a random task,
which doesn’t change during the trial, and zero task activity and noise.

The values that are kept by the states (i.e. task activity and noise) are continuous,
which means the amount of possible states that could be encountered is infinite. Since
this allows for a too high space complexity, the states are discretised when stored as
Q-states. The task activity and noise are summed and then rounded to one decimal
place. This limits the complexity to a level that can still be run on a personal computer.
This discretisation is done by the Q-learning algorithm, but has no effect on the model
itself. The states itself still store continuous values, and calculating the reward is also
based on these continuous values. This keeps the learning, and its limitations, separated
from the model itself.

There is no real solution to the exploration vs. exploitation dilemma [31]. Suggested
by Sutton, and the strategy most widely used in the literature, is the ε-greedy strategy
[45]. The ε-greedy strategy makes use of the ε parameter. This parameter determines
how often the agent explores (i.e. chooses a random action) versus exploiting known
knowledge. If this parameter is set to 50%, every other action will be random. Since
this method is simple and effective, and there are no obvious better alternatives, this
method is used by the Q-learning agents in the experiments.

2.3 Parameters

This paragraph states the parameter settings used in the experiments. Four tasks are
used in the experiments, as all the research done by the group uses four tasks. These
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tasks can be named (e.g. left hand IM, right hand IM, etc.), but basically represent four
arbitrary tasks that induce ERDs in the brain of the user. The value of the modulation
rate determines the complexity of the model. The lower the modulation rate, the higher
the complexity of the model since there will be more discrete steps to get to full activity
in a task. For these experiments it has been set to 0.25. This means that there are
four actions needed to get to full activity in one task. Pfurtscheller and Neuper (2001)
state that it takes 250-500ms from cue-onset to discriminate between right and left hand
imagined movement [46]. Using this information, and figure 2, we make the assumption
that it takes 0.25 seconds to go from zero activity to full activity in one task. Since a
trial is meant to represent a real BCI trial of 5 seconds (see Figure 1), to have one trial
represent 5 seconds it consists of 5 ÷ 0.25 ÷ 0.25 = 80 epochs. dvCalFactor has been
set to 6, which for task activity of one task at 100% activity and three tasks at 0% will
return a prediction of 99% for the task that is being performed.

There are several Q-Learning parameters that normally have to be set in a way that
optimises learning in a certain environment. Often, these are set using trial-and-error
[31]. However, since it’s not needed to optimise the learning in this research, these pa-
rameters do not have to be fine-tuned. The learning rate α, determines how valuable
new information is to the learner [31]. If α is set to a high value, recent rewards weigh
more heavily than long-past ones, and newly acquired information will override old infor-
mation. The learning rate α has been set to the standard value of 0.1 [31]. The discount
factor γ, determines the importance of future rewards. A high discount factor will make
the agent strive for long-term rewards, since the rewards of the possible future states will
weigh more heavily. The discount factor γ has been set to 0.9. The last parameter that
needs to be set is the exploration rate, ε. The exploration rate determines how often the
agent will explore a random action to see if that action might be more profitable than
ones already encountered [45]. A low exploration rate will lead to higher short-term
rewards, but might be bad in the long-term since actions that may be more valuable are
not explored. The exploration rate ε has been set to 0.1, one out of every ten actions a
random action is performed.

2.4 Analysis

After every episode (i.e. trial), the policy generated by the learner is evaluated. The pol-
icy is a mapping of a state to the action with the highest Q-value in that state [31]. The
policy is evaluated on all four tasks by performing the action returned by the policy for
each state encountered. If the policy does not contain a certain state, a random action
will be performed. The cumulative reward over these four trials is the evaluation score.
The number of trials to run for an experiment is determined by hand, by doing a number
of test runs to see how many trials are needed before the learning rate converges (i.e. the
agent has approximately maximised his learning). Since there is an element of random-
ness (i.e. the selection of actions) to the Q-learning agent, the experiment will be run 60
times, to ensure that meaningful results are obtained. Each agent represents a subject,
and groups of subjects with different model parameters will be compared. The metric
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Figure 6: Visualisation of the convergence threshold. The amount of trials it takes an
agent to cross the convergence threshold is the measure used to compare conditions: the
trials-to-convergence.

that is used to compare different groups of subjects is called the trials-to-convergence.
The lower the trials-to-convergence is, the faster the agent will have learned.

Sixty agents are trained, and after every trial their policy is evaluated, which results
in a score for every trial. The scores for these sixty agents are then averaged. The
score over the last 1000 trials (when the learning rate has converged) is averaged, which
results in the average convergence score. 95% of this score is used as the convergence
threshold, to make sure that each agent reaches it. The convergence threshold is the
threshold by which each agent has approximately maximised his learning, see Figure 6
for an example of the convergence threshold. For each agent the trials-to-convergence
measure is then calculated, by counting the amount of trials it takes for the agent to
cross the convergence threshold. This results in a single measure of learning for each
agent: the number of trials to convergence. But the value of the convergence threshold
is also important, since a very high amount of noise may lead to agents converging at
a very low level of performance. The value of the convergence threshold will also be
reported, and we call this value the performance-at-convergence.
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Theoretically, given enough time, every agent should be able to obtain optimal per-
formance. Since noise is gaussian, after enough trials the noise should have canceled out
and the real optimal actions will be known to the agent. However, as can be seen in Fig-
ure 6, it takes a lot of trials for the noise to completely cancel out, at 100,000 trials the
performance still fluctuates. Yet, the agent in the figure has approximately converged,
performance is very close to optimal and is relatively stable. The optimal performance-
at-convergence for continuous feedback equals -6, but will be reported as 0 (i.e. 6 will be
added to all performance-at-convergence measures), so that performance can be more
easily compared. The optimal performance-at-convergence for discrete feedback is 0.

To investigate the effects of continuous and discrete feedback on learning, a Student’s t-
tests will be used if the data conforms to the following requirements: 1) the data follows
a normal distribution, 2) the two samples have equal variances [47]. Normality of the
data will be tested using the Shapiro-Wilk test, which has been shown to be the most
powerful normality test [48]. Equivalence of variances will be tested using Levene’s test
for equality of variances [49]. If the data is normal but the two groups do not have equal
variances, Welch’s t-test will be used, which is more reliable for samples with unequal
variances [50]. If the data turns out to not be normally distributed, the non-parametric
Mann-Whitney U test will be used. They will be compared while keeping other variables
static, so the continuous and discrete groups will be compared without any noise.

Since different levels of optimism and pessimism in the feedback might have different
effects, experiments will be run with increasing amounts of optimism and pessimism
(starting with 0.01, and repeatedly multplying by 2). The means for these different lev-
els will be compared to see which level of optimism and pessimism has the most effect,
using a boxplot. To see if optimistic and pessimistic reward noise have an effect, the
factor of noise to compare is selected by plotting the different levels and choosing the
trials-to-convergence mean that is the lowest of the different levels. This level will then
be compared to the neutral condition for both the optimistic and pessimistic feedback
conditions using either a Student’s t-test or Mann-Whitney U test, depending on the
requirements mentioned above.

To investigate the effect of noise on learning, we are interested in the correlation be-
tween the signal-to-noise ratio (i.e. the amount of system noise) and the rate of learning
(i.e. trials-to-convergence). Increasing levels of noise will be investigated, starting at
0.001 and multiplying this by 2 repeatedly. The data will first be tested for normality
using the Shapiro-Wilk test. The data will also be screened graphically to determine
how the speed of learning and amount of noise are related, and different curves will be
fit to determine what relationship describes the data best. Depending on the outcome of
the screening, either Pearson’s correlation coefficient (for a possible linear relationship)
or Spearman’s rank correlation coefficient (for a non-linear relationship) will be cal-
culated. Since Spearman’s rank-order correlation is non-parametric, normality is not a
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Figure 7: Graph of the continuous and discrete feedback conditions. The height of the
bars represents the mean trials to convergence for each condition, and the error bars
depict the standard deviation for each condition. The two conditions are compared with
system noise set to 0.

requirement for the data, whereas it is a requirement for Pearson’s correlation coefficient
[51]. The results of the curve fitting will also be reported to illustrate the relationship
between the two variables. To investigate a possible interaction between noise and con-
tinuous and discrete feedback, a two-way ANOVA will be used. ANOVA has the same
assumptions as the Student’s t-test, but since this question cannot be empirically inves-
tigated, ANOVA will be used regardless of the shape of the data. Ellis (2013) states
that if one of the assumptions is violated, the p-value might not be trustworthy anymore
[52], but in this case we can accept this. We are interested in a possible interaction effect.

All code used in the experiments and analysis can be found at
https://gitlab.socsci.ru.nl/d.roos/bcirflearning
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3 Results

3.1 Continuous vs. discrete feedback

We compare the trials-to-convergence for continuous and discrete feedback with zero
system noise and zero reward noise. After removal of outliers, both the continuous and
discrete feedback conditions turn out to be normally distributed (Shapiro-Wilk df =
60, p = .075 and df = 56, p = 0.094 respectively). This means that depending on
the variance, either a Student’s t-test or Welch’s t-test can be used. The variances of
both groups can not be assumed to be equal (F = 13.473, p ¡ .001), so Welch’s t-test
will be used. The hypothesis is that learning will be faster in the continuous feedback
condition than in the discrete feedback condition, so a one-tailed test will be performed
(H1 : µcontinuous <= µdiscrete). According to Welch’s t-test, the mean of the continuous
feedback condition is significantly lower than the mean of the discrete feedback condition
(t(93.906) = -9.023, p < .001). See Figure 7 for a visualisation of the results for the
two feedback conditions. The performance-at-convergence for the continuous condition
is optimal, at 0, and for discrete feedback it is very close to optimal, at -0.03.

3.2 Optimistic and Pessimistic feedback

Since optimistic and pessimistic feedback might have different effects depending on the
level of optimism or pessimism, we want to investigate what level is optimal to learning.
We do this by boxplotting the different levels and choosing the level with the highest rate
of learning (i.e. lowest average trials-to-convergence). At .04 optimistic reward noise we
find the lowest average trials-to-convergence (M = 43.72, SD = 21.514), so this level of
reward noise will be used to compare optimistic and pessimistic feedback with neutral
feedback. System noise is set to 0 for the optimistic, pessimistic and neutral groups. It
is hypothesized that both optimistic and pessimistic feedback will lead to slower learning
than neutral feedback (H1 : µoptimistic <= µneutral, H2 : µpessimistic <= µneutral). The
neutral condition (i.e. normal feedback) is normally distributed (Shapiro-Wilk p >
.05). The optimistic feedback condition is normally distributed after removal of outliers
(Shapiro-Wilk p > .05), so a Student’s t-test can be performed. Levene’s test for equality
of variances is significant (F = 18.208, p < .001), so equal variances cannot be assumed.
According to Welch’s t-test the mean of the optimistic condition is significantly lower
than the mean of the neutral condition (t(96.725) = -5.987, p < .001). The pessimistic
feedback condition is normally distributed (Shapiro-Wilk p > .05). Levene’s test for
equality of variances is insignificant (F = 3.034, p > .05) so equal variances can be
assumed. The Student’s t-test shows that the mean of the pessimistic feedback condition
is significantly higher than the mean of the neutral condition (t(118) = 14.739, p <
.001). See Figure 8 for a visualisation of the results for the three feedback conditions.
The performance-at-convergence for both conditions is optimal (i.e. both are 0).
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Figure 8: Graph of the optimistic, neutral, and pessimistic feedback conditions. The
height of the bars represents the mean trials to convergence for each condition, and the
error bars depict the standard deviation for each condition. The three conditions are
compared with system noise set to 0.
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Figure 9: Graph of quadratic curve fitted to the continuous data with increasing amounts
of system noise.
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Figure 10: Plot of the interaction effect between type of feedback and amount of system
noise. The effect of noise seems to get bigger for discrete feedback than continuous
feedback as the noise increases.
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3.3 The relationship between system noise and rate of learning

For the continuous data we investigate noise levels starting at 0.001 up to 0.128, in steps
multiplied by 2 (i.e. 0.001, 0.002, 0.004 etc.). It is found that the data is not normally
distributed (Shapiro-Wilk p < 0.001), so the Spearman’s rank correlation coefficient will
be used regardless of the type of relation between the variables. Using curve fitting we
find that the data is very well described by a quadratic relationship (F(537) = 9393.295,
p < .001, R2 = 0.972). A visualisation of this quadratic curve fitted to the data can be
seen in Figure 9. Since the data is best described by a non-linear relationship, we use
Spearman’s rank correlation coefficient to determine the correlation. We find a signifi-
cant positive monotonic relationship between trials-to-convergence and system noise, as
given by Spearman’s rank correlation coefficient (N = 540, ρ = .802, p < .001). For
discrete data we investigate noise levels starting at 0.001 up to 0.064, since noise levels
higher than 0.064 take too long to run. We find that the data does not have a normal
distribution (Shapiro-Wilk p < 0.001). So the Spearman’s rank correlation coefficient
will be used regardless of the type of relation between the variables. We find that this
data also fits a quadratic relationship very well (F(477) = 5151.391, p < .001, R2 =
0.956). There is a significant positive correlation between time-to-convergence and sys-
tem noise as given by Spearman’s rank correlation coefficient (N = 480, ρ = .937, p <
.001).

If we express the noise as a noise-fraction (i.e. noise/(noise + signal)), a quadratic
relationship still has the best fit (F(537) = 9054.314, p < .001, R2 = 0.971). However,
the effects of noise have only been measured up to the noise level of 0.128. When the
amount of noise gets higher it may be possible that a linear relationship is a better fit, but
to test this more data would be needed. For the data that is available, a quadratic rela-
tionship is almost a perfect fit. Up to the level of 0.064 system noise, the performance-at-
convergence is optimal. At a system noise level of 0.128 the performance-at-convergence
is -9, which is still close to optimal. But at this level of noise the performance still fluctu-
ates at 80,000 trials, to get a better performance-at-convergence the agents would need
to train for more trials. From the two-way ANOVA with type of feedback and amount
of noise, we find a significant interaction effect between noise and type of feedback (F(6)
= 818.453, p < .001, eta2 = .856). See Figure 10 for a plot of the interaction effect.

4 Discussion

In this discussion I will try to answer the research questions using the results, existing
literature, and the results of the other group members.

The results show that the continuous feedback condition has a significantly higher learn-
ing rate (i.e. lower average trials-to-convergence) than the discrete feedback condition.
This is to be expected accounting for how Q-learning works, since feedback is slower
which means that the agent will need more training to get to the same level of perfor-
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mance. Neuper et al. (1999) suggest that continuous feedback leads to more efficient
BCI learning than delayed discrete feedback [36], while McFarland et al. (1998) show
that continuous feedback can have either a facilitory or inhibitory effect depending on
the learner. The literature is not yet sure about what kind of feedback leads to the most
efficient BCI learning, but multiple factors might be in play. Since continuous feedback
provides constant cursor movement, this might distract the user or lead to EEG responses
that interfere with BCI control. Continuous feedback might decrease the signal-to-noise
ratio, leading to worse performance. Especially in the beginning, when a user is not yet
proficient in controlling a BCI and thus producing strong brain signals, this might work
detrimental. Since motivation plays an important role in training [39], the most impor-
tant thing for a new user might be to avoid demotivation. Discrete feedback may help
with this aspect, since one can argue that this leads to a higher signal-to-noise ratio, and
thus to better results for a new user. The results by Jordy Ripperda were insignificant
due to too few test subjects, so there is no real point in comparing the model’s results
with his.

The results of the optimistic and pessimistic feedback experiments are surprising. Since
both are essentially noisy rewards, it was hypothesized that both would lead to slower
learning than the neutral condition. However, this turned out to be wrong. Optimistic
feedback at a level of .04 (which had the lowest mean trials-to-convergence), turns out
to be more efficient than the neutral condition. Barbero and Grosse-Wentrup (2010) hy-
pothesize that biased feedback is especially helpful by increasing motivation when a user
is not yet proficient at controlling a BCI. When a user is already capable, they found that
biased feedback resulted in slower improvement. Pessimistically biased feedback has not
been investigated, but one can argue that this would have a demotivating influence and
thus lead to slower learning. The model’s result show that pessimistic feedback at a level
of .04 is slower than neutral feedback. It turns out that these results can be explained by
how the model works. Because of the way predictions are calculated, even performing a
correct action, the highest reward an agent can receive is negative. This means that if
the agent performs a correct action for the first time, because of the ε-greedy strategy,
all the other actions will be tried first, since they still have a Q-value of 0 while the
Q-value of the correct action now has a slightly negative value. When giving optimistic
rewards, the correct action will lead to a slightly positive Q-value. Because of greedy
actions, this action will be performed from that point on, leading to faster learning. For
pessimistic rewards, the correct action will be more negative than they are in the neutral
feedback condition. This means that there’s a higher chance that the correct action will
lead to a lower reward than an incorrect action. If this happens, learning slows down,
which explains the slower learning in the pessimistic feedback condition. The results
from the pessimistic feedback condition follow the hypothesis, the negative rewards do
not affect this condition. Negative rewards lead to exploration, since actions that have
not been tried yet will always have a higher Q-value than actions that have been tried.
The opposite happens when rewards are positive, where the action performed first will
always be the greedy action until other actions have been performed. The odds of this
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happening depend on ε. So these results are explained by the use of negative rewards.
The Q-learning algorithm still functions correctly, but the results of the optimistic feed-
back condition are a side-effect. One could expect that the hypothesis, optimistic and
pessimistic feedback leading to slower learning, holds when the rewards are all positive.

Unsurprisingly, as the signal-to-noise ratio decreases, the learning rate also decreases.
What is surprising, is that this relation follows an almost perfect quadratic equation.
As the noise increases, the learning rate decreases quadratically. This means that low
levels of noise are not that detrimental to learning, but as the noise increases, the effect
of noise on learning will get bigger and bigger. So minimizing the signal noise should
be one of the goals of BCI research, because it can have a big effect if the amount of
noise is large enough. System noise seems to have a bigger effect on learning in the
discrete feedback condition than the continuous condition. Possibly the effect of system
noise also cancels out the rewards in the continuous condition, whereas in the discrete
feedback any noise at the last state in the trial leads to an incorrect reward. Since the
agent receives much less rewards in the discrete feedback condition, this might explain
why the effect of noise is bigger in the discrete condition than in the continuous condition.

Although it is difficult to compare the results gained using the model with empirical
results since research in this area is scarce, the model seems to reflect empirical data
rather well. A lot of factors such as motivation or natural skill are not included in this
model, yet the results are comparable to empirical data. I believe the current model
reflects BCI learning relatively well, considering that it can represent different brain
states (i.e. task activity), noise, and can be used to investigate different neurofeedback
parameters such as continuous and discrete feedback and investigate the effect of noise
to BCI learning. Although the model can still be improved, I believe this model provides
a nice basis for further research, especially when the rewards are changed to be positive.

4.1 Future Work

Since the results for the optimistic and pessimistic feedback condition are a side-effect of
the negative rewards, a better way of calculating rewards can be a future improvement.
There’s a good argument for the way rewards are calculated in the current model, so
finding a way to calculate positive rewards that makes as much sense as these negative
rewards may be difficult. But if done correctly, the optimistic and pessimistic feedback
conditions can be investigated correctly.

Currently the model uses basic Q-states to store the value. This really limits the com-
plexity of the model due to the amount of states that can be stored. It also does not
reflect how a human brain learns skills, since a human is able to generalize its knowledge,
which an agent is not able to do using a tabular method of storing Q-values. A better
alternative would be function approximation, which allows the agent to generalize its
stored knowledge [31]. Neural networks may be a perfect form of function approximation
for this model, since they are based on neurons in the human brain [53]. Using such a

26



form of function approximation would also allow the use of a continuous Markov Deci-
sion Process [31]. This could be an additional improvement to the current model, since
the human brain does not run in discrete steps and this would increase the complexity
of the model to be closer to the complexity of the human brain.

Additionally, a form of motivation could be added. As mentioned above, motivation
plays a large role in skill learning in humans. The reason optimistically biased feedback
improves learning in beginning users may be explained largely due to motivation. To
simulate these effects motivation should be added to the model, leading to results that
better reflect empirical data. Anoter possible improvement is separating the tasks from
multiple actions. Neuper et al. (2005) show that the BCI performance of subjects using
imagined movement is very reliant on the way they perform these tasks [54]. Kines-
thetic motor imagery, where a user imagines actually moving a limb, performs much
better than visual-motor imagery, where a user imagines viewing theirself in 3rd person
performing the movement. This means that there are different ways of performing a
task that have an effect on BCI performance. This could be included in the model, by
having different actions modulate the same task at different levels. This would increase
learning complexity, but also be closer to how humans learn BCI control.

4.2 Conclusion

A computational model of BCI learning was constructed, and reinforcement learning
was used to train agents on the model. The learning rates of these agents were then
compared with empirical data. The results reflect empirical data surprisingly well. In
the model, continuous feedback leads to more efficient learning than discrete feedback,
although the literature is not yet decided on this topic. Continuous feedback may lead
to a lower signal-to-noise ratio, which at higher levels is very detrimental to learning, as
shown by the model. The model shows that learning is more efficient using optimistic
feedback than neutral feedback, and neutral feedback is more efficient than pessimistic
feedback. Unfortunately, the results for the optimistic feedback condition turn out to be
a consequence of the way rewards are calculated, so the question if optimistic feedback
leads to more efficient learning than neutral feedback cannot be answered using the
current model. Pessimistic feedback does seem to lead to slower learning, which was
expected. To optimize learning, the model showed that noise should be minimized. As
the noise grows, the learning slows down quadratically, so high levels are noise are very
detrimental to performance. All in all, although the model can still be improved, it
should provide a good basis for additional research.
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Appendices

A Reward calculation

The following calculation is used to create a prediction out of the task activities:

prob = exp((task activity −max(task activity) ∗ dvCalFactor)

prob = prob/sum(prob)

The calculation of the reward using the distance between the cursor ellipse and the
trial task ellipse is equal to the one in the Buffer BCI system. From every task output
the maximum task output is subtracted, and is multiplied with the dvCalFactor. The
dvCalFactor is a parameter used to make small changes in predictions lead to larger
changes in the cursor position. If dvCalFactor would not be used, the user would hardly
see any change in the cursor position, which would not be useful feedback. In the model
dvCalFactor has been set in a way such that full activity in one task and zero activity in
the different tasks, will lead to a prediction of 9̃9% for the full activity task. After the
values have been multiplied with the dvCalFactor, the exponential function is used on the
probabilities. This scales the prediction, and ensures that even negative values (which
can occur due to noise) will lead to a positive prediction. After this, the predictions
get normalised and multiplied with the task ellipses. This results in the new cursor
position. The euclidean distance between the trial task ellipse and the cursor ellipse is
then calculated, and the negated value of the distance is returned as the reward. At the
last state of a trial, the closest task ellipse to the cursor is predicted, and the distance
between the predicted task ellipse and trial task ellipse is used as reward.
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